Global Olefins and Polyolefins Outlook
Navigating Energy Transition in Highly Competitive and Dynamic Markets
Agenda

State of the Olefins and Polyolefins industry

- New capacity
- Impacts on markets
- Cost competitiveness

Energy transition and long-term Impacts

Takeaway
The olefin and polyolefin markets have experienced a variety of challenges over the past few years. Despite holding up well during the 2020 COVID shutdowns compared to other commodities, ethylene's demand growth weakened in 2022

Ethylene demand growth compared to GDP and energy / chemical commodities
Most recent incremental ethylene capacity has been added in China or the USA

Ethylene Capacity vs. Demand Increases

- Global Demand Change
- Central and Eastern Europe
- Northeast Asia ex-China
- North America
- Central and South America
- Russia and CIS
- Mainland China
- Africa
- Middle East
- Western Europe
- Middle East
- Southeast Asia
- South Asia
- Operating Rate

© 2023 S&P Global Commodity Insights®. All rights reserved.
Huge propylene capacity vs demand build up across ‘20-24. Operating rates will remain low until early 2025.
Polyethylene capacity additions led by China and the US has over-paced demand growth across in ‘20-23.

Capacity vs. Demand Increase for Global PE

- **Global Demand Change**
- **Middle East**
- **Western Europe**
- **South Asia**
- **Mainland China**
- **Northeast Asia**
- **Russia and CIS**
- **Southeast Asia**
- **North America**
- **Other**
- **Africa**
- **Operating Rate**

Polyethylene Capacity Additions (2020-2024)

<table>
<thead>
<tr>
<th></th>
<th>Capacity (MT)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>12.9</td>
<td>56%</td>
</tr>
<tr>
<td>North America</td>
<td>4.7</td>
<td>20%</td>
</tr>
<tr>
<td>Northeast Asia</td>
<td>2.2</td>
<td>10%</td>
</tr>
<tr>
<td>India & Subcontinent</td>
<td>1.3</td>
<td>6%</td>
</tr>
<tr>
<td>ROW</td>
<td>1.8</td>
<td>8%</td>
</tr>
</tbody>
</table>

Source: S&P Global Commodity Insights.
Middle East & North America continue as largest exporters of polyethylene; China remains the largest importer

Total PE net trade by region (MMT)

- Middle East exports 85% of its production
- North America exports 55%
- Russia exports 47%
- China's self-sufficiency stands at 65%, projected to increase to 71% by 2026

Source: S&P Global Commodity Insights

© 2023 S&P Global Commodity Insights®. All rights reserved.
Ethane Based Producers retain cost advantage on a “Delivered Cost basis to China”

Delivered Cost of Polyethylene to China - 2023

Delivered Cost of Polyethylene to China - 2025

Platts | CERAWeek | Chemical Week

© 2023 S&P Global Commodity Insights®. All rights reserved.
Polypropylene industry is currently going through the peak of a unprecedented capacity wave in ‘20-24

World : PP capacity growth by region (Million Metric Tons)

- Mainland China
- Southeast Asia
- South Asia
- Americas
- Europe
- Middle East
- Africa
- Northeast Asia

<table>
<thead>
<tr>
<th>Region</th>
<th>Capacity Addition Share (2020-26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainland China</td>
<td>64%</td>
</tr>
<tr>
<td>Southeast Asia</td>
<td>13%</td>
</tr>
<tr>
<td>South Asia</td>
<td>10%</td>
</tr>
<tr>
<td>Americas</td>
<td>5%</td>
</tr>
<tr>
<td>EMEA</td>
<td>4%</td>
</tr>
<tr>
<td>Europe</td>
<td>4%</td>
</tr>
<tr>
<td>Africa</td>
<td></td>
</tr>
<tr>
<td>Northeast Asia</td>
<td></td>
</tr>
</tbody>
</table>
The ongoing wave of capacity expansion in China is being propelled by deregulation of refinery-petrochemical industry and the central government's efforts to enhance self-sufficiency.
Energy Transition: Olefin value chain’s long-term disrupter

Examples affecting olefin value chain
- Peak refined products demand
- Evolution of natural gas demand
- Process heating
- Rate of decarbonization
Ethane continued to gain share of total ethylene feedstocks. However, naphtha remains to be critical to olefin industry.

Ethylene Production by Feedstock
(2019 inner/ 22 outer)

- Ethane: 38%
- LPG: 15%
- Other: 7%
- Naphtha: 38%

Ethylene Production by Feedstock
(Ethylene, million t/a)

- Ethane
- LPG
- Naphtha
- Other

© 2023 S&P Global Commodity Insights®. All rights reserved.
If naphtha yields / refinery throughputs underperform, ethylene feedstock slates would need to fundamentally change

Incremental Naphtha Requirement for Ethylene vs Refinery Scenarios (Naphtha, Million t/y)

- Blue: Naphtha requirement from ethylene forecast (trendline post 2032)
- Orange: Naphtha from refining, assuming increasing naphtha yield
- Purple: Naphtha from refining, same throughput but constant naphtha yield
E-furnaces in crackers can potentially remove ~1 million tons per year of CO₂ emissions per world scale cracker*

- Ethane crackers emit ~0.85 metric tons CO₂ / ton ethylene
- Mostly in flue gas of furnaces (~97%)
- Two strategies to trim carbon emissions
 - Electrification – still in pilot testing phase, partial or whole replacement of NG with H₂
 - CCUS – more mature and commercialised technology
- No commercial installations yet
 - Pioneers: BASF / SABIC / Linde, Dow / Shell, Technip / Siemens

* Assume 1.5 million ton per year ethane cracker; Scope 1 and Scope 2 emissions

Photo source: BASF, SABIC and Linde started construction of the world’s first demonstration plant for large scale steam-cracker furnace (chemengonline.com)
E-furnaces in steam crackers can potentially reduce CO₂ emissions by 90%, but CAPEX rises to ~1.33x

- Variations of process to reduce total CO₂ emissions
 a. Conventional ethane cracker (base case)
 b. Conventional cracker + carbon capture from flue gas
 c. Cracker with furnace fuelled by blue hydrogen
 d. E-Furnace, electricity via NET Power™ system (NG to clean energy through oxy-combustion process)

Comparisons for a 1.5 MM tpy Ethylene Cracker

- Total fixed investments
- Production cost
- CO₂ emissions

Source: IHS Markit PEP Report 2022-04, Low Carbon Ethylene Production via E-furnace Powered by NET Power Cycle

© 2023 S&P Global Commodity Insights®. All rights reserved.
On-purpose propylene production share will become important as energy transition will cause FCC source of PGP/CGP to decline.
Hydrogen co-product from PDH creates opportunities in hydrogen economy aligned with China’s energy and fuel cell industry

- Provides low-cost, low-carbon source of hydrogen, easily integrated into existing infrastructure and supply chains
- Aligned with China’s energy and fuel cell industry
 - For example, Dongguan Grand in Pearl River Delta China, is plugged into the Hydrogen Energy Integrated Plan
- Demand for hydrogen refilling from this source is small and it has a long way to go (at least 5-10 years).
 - Only ~3% of total domestic hydrogen supply

19.3 MMT PDH capacity in China (2023) → 1.1 MMT of usable hydrogen → ~3% of total domestic hydrogen supply

Source: S&P Global Commodity Insights
Resilient demand in 2021 supported margin of olefin value chain, but **2022 was trough year**

2023 likely worst year of trough; margin recovery by 2026 with capacity discipline

Energy Transition efforts already impacting olefins & polyolefins markets

- Refinery yield structure will change feedstock slates – and costs
- Decarbonization rate a key factor